Strengthen Your Understanding

10.5 FOURIER SERIES 565

In Problems 24-25, explain what is wrong with the statement.

24. Let P.(z) be a Taylor approximation of degree n for
a function f(z) about a, where a is a constant. Then
|f(a) — Pa(a)] > O for any n.

25. Let f(z) be a function whose Taylor series about z = 0
converges to f(z) for all z. Then there exists a posi-
tive integer n such that the n‘®-degree Taylor polynomial
P, () for f(z) about z = 0 satisfies the inequality

[f(z) — Pa(z)| <1 forall values of z.

In Problems 26-28, give an example of:

26. A function f(z) whose Taylor series converges to f(z)
for all values of x.

27. A polynomial P(z) such that |1/z — P(z)| < 0.1 for all
z in the interval [1, 1.5].

28. A function f(z) and an interval [—c,c] such that the
value of M in the error of the second-degree Taylor poly-
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nomial of f(z) centered at O on the interval could be 4.

Decide if the statements in Problems 29-33 are true or false.
Assume that the Taylor series for a function converges to that
function. Give an explanation for your answer.

29, Let P,,(x) be the nt" Taylor polynomial for a function f
near z = a. Although P,(z) is a good approximation to
[ near z = aq, it is not possible to have Pr(z) = f(z)
for all z.

30. If |f(™ (x)| < 10 for all n > 0 and all z, then the Taylor
series for f about = 0 converges to f(z) for all .

31. If f((0) > n! for all n, then the Taylor series for f
near z = 0 diverges at x = 0.

If f™(0) > n! for all n, then the Taylor series for f
near x = 0 diverges at x = 1.

32.

33. If f™(0) > n! for all n, then the Taylor series for f
near z = 0 diverges at z = 1/2.

We have seen how to approximate a function by a Taylor polynomial of fixed degree. Such a poly-
nomial is usually very close to the true value of the function near one point (the point at which the
Taylor polynomial is centered), but not necessarily at all close anywhere else. In other words, Tay-
lor polynomials are good approximations of a function locally, but not necessarily globally. In this
section, we take another approach: we approximate the function by trigonometric functions, called
Fourier approximations. The resulting approximation may not be as close to the original function at
some points as the Taylor polynomial. However, the Fourier approximation is, in general, close over
a larger interval. In other words, a Fourier approximation can be a better approximation globally.
In addition, Fourier approximations are useful even for functions that are not continuous. Unlike
Taylor approximations, Fourier approximations are periodic, so they are particularly useful for ap-

proximating periodic functions.

Many processes in nature are periodic or repeating, so it makes sense to approximate them by
periodic functions. For example, sound waves are made up of periodic oscillations of air molecules.
Heartbeats, the movement of the lungs, and the electrical current that powers our homes are all
periodic phenomena. Two of the simplest periodic functions are the square wave in Figure 10.19
and the triangular wave in Figure 10.20. Electrical engineers use the square wave as the model for
the flow of electricity when a switch is repeatedly flicked on and off.

i
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Figure 10.19: Square wave

Figure 10.20: Triangular wave
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Fourier Polynomials

We can express the square wave and the triangular wave by the formulas

!" ; ' 4
0 -1<z<0 - -1<z<0
Jl 0<z<«l z 0<z<1
fl@)=4¢0 1<z<?2 g@) =S 2z 1<z<?
1 2<z <3 T —2 2<x<3
0 3<z<4 4—z 3<zr<4

i : VI i
However, these formulas are not particularly easy to work with. Worse, the functions are not dif-
ferentiable at various points. Here we show how to approximate such functions by differentiable,
periodic functions.

Since sine and cosine are the simplest periodic functions, they are the building blocks we use.
Because they repeat every 2, we assume that the function f we want to approximate repeats every
2m. (Later, we deal with the case where f has some other period.) We start by considering the
square wave in Figure 10.21. Because of the periodicity of all the functions concerned, we only
have to consider what happens in the course of a single period; the same behavior repeats in any

other period.
Y
f(=z)

i
— Loz
—T 0 s
Figure 10.21: Square wave on [—7, |
We will attempt to approximate f with a sum of trigonometric functions of the form

f(z) ~ Fr(z)
= ap + a1 cos x + ap cos(2x) + az cos(3z) + - - - + an cos(nx)
+ by sinz + by sin(2z) + bz sin(3z) + - - - + by, sin(nz)

n n
=aqp+ Z ay cos(kz) + Z by, sin(kz).
k=1 k=1
F,,(z) is known as a Fourier polynomial of degree n, named after the French mathematician Joseph
Fourier (1768-1830), who was one of the first to investigate it.’ The coefficients ay, and by, are called
Fourier coefficients. Since each of the component functions cos(kz) and sin(kz), k =1, 2,...,n,
repeats every 2w, F,,(z) must repeat every 27 and so is a potentially good match for f(z), which
also repeats every 2m. The problem is to determine values for the Fourier coefficients that achieve a
close match between f(z) and F),(z). We choose the following values:

The Fourier Coefficients for a Periodic Function f of Period 27

1 ™

ap = o . f(z) dz,

ay = ! f(z)cos(kz) de fork >0,
T J_r

by = ! f(z)sin(ka)dx fork > 0.
7r

-7

Notice that ag is just the average value of f over the interval [—m, 7).

5The Fourier polynomials are not polynomials in the usual sense of the word.



10.5 FOURIER SERIES 567

For an informal justification for the use of these values, see page 573. In addition, the integrals over
[—, 7] for ay and by, can be replaced by integrals over any interval of length 27.

Example 1

Solution

Construct successive Fourier polynomials for the square wave function f, with period 27, given by

0 —7<2<0
f(m)_{l 0<z<m.

Since ay is the average value of f on [—, 7], we suspect from the graph of f that ag = % We can
verify this analytically:

1 [ 1 5 1 [ 1 i
G = 5 /_Wf(at)dw o /_7r0dm+27r/0 dr =0+ 27r(7r) 5

Furthermore,

1 /" 1 /"
a = — f(z)coszdz = — lcoszdr =0
T J_r ™ Jo
and L L g 5
by = — f(x)sin:vdm:—/ lsinzdr = —.
™ J—r m™Jo i

Therefore, the Fourier polynomial of degree 1 is given by
f(z)~ Fi(e) =5 + 2sing
)~ Fi(z) =5 + _sinz,

and the graphs of the function and the first Fourier approximation are shown in Figure 10.22.
We next construct the Fourier polynomial of degree 2. The coefficients ag, a1, by are the same

as before. In addition,

ag = l f(a;) COS(2$) dr = l / 1COS(2(L’) dr =0
T J ™ Jo
and Lt 1/
by = = f(z)sin(2z) dzx = = / 1sin(2z) dz = 0.
™) _r ™ Jo

Since a; = by = 0, the Fourier polynomial of degree 2 is identical to the Fourier polynomial of
degree 1. Let’s look at the Fourier polynomial of degree 3:

1/ 1 /"
az == f(x)cos(3z)dx = —/ lcos(3z)dr =0
m™J_n m™Jo
and
o=~ [ p@)sin@a)da= 1 [ 1oy do = 2
== x) sin(3z == sin(3z) dx = —.
A - — 0 3T
So the approximation is given by
1 2 2
f(z) ~ F3(z) = ki - sinz + 3 sin(3z).
il f 1 f
1 F z F
\ /2 1 2 3
e N T - | S
Figure 10.22: First Fourier approximation to Figure 10.23: Third Fourier approximation to

the square wave the square wave
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Figure 10.24: Fifth and seventh Fourier approximations to the square wave

The graph of Fj is shown in Figure 10.23. This approximation is better than F (z) = % + % sinz,

as comparing Figure 10.23 to Figure 10.22 shows.
Without going through the details, we calculate the coefficients for higher-degree Fourier ap-

proximations:

1 2 2 2
Fs(z) = i - sinz + = sin{3z) + = sin(bz)

1 2 2 2 2
Fr(z) = 3 + - sinz + 3 sin(3z) + B sin(5z) + o sin(7z).

Figure 10.24 shows that higher-degree approximations match the step-like nature of the square wave
function more and more closely.

We could have used a Taylor series to approximate the square wave, provided we did not center
the series at a point of discontinuity. Since the square wave is a constant function on each interval,
all its derivatives are zero, and so its Taylor series approximations are the constant functions: 0 or 1,
depending on where the Taylor series is centered. They approximate the square wave perfectly on
each piece, but they do not do a good job over the whole interval of length 27, That is what Fourier
polynomials succeed in doing: they approximate a curve fairly well everywhere, rather than just
near a particular point. The Fourier approximations above look a lot like square waves, so they ap-
proximate well globally. However, they may not give good values near points of discontinuity. (For
example, near z = 0, they all give values near 1/2, which are incorrect.) Thus Fourier polynomials
may not be good local approximations.

Taylor polynomials give good local approximations to a function;
Fourier polynomials give good global approximations to a function.

Fourier Series

As with Taylor polynomials, the higher the degree of the Fourier approximation, generally the more
accurate it is. Therefore, we carry this procedure on indefinitely by letting n — oo, and we call the
resulting infinite series a Fourier series.

The Fourier Series for f on [-m, 7]

f(z) = ag + a) cosx + ap cos 2z + az cos 3z + -+
+ bysinz + by sin2z + bysin3x + - -+

where a and by, are the Fourier coefficients.

Thus, the Fourier series for the square wave is

1 2 2 2 2
flx)= §+;sinm+§sin3w+5—wsin5m+ﬁsinhﬂ----
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Let us start with a function f(z) that is periodic with period 27, expanded in a Fourier series:

f(z) =ao+aicosx + ascos2z +agcos3z + - - -
+ bysinx + by sin2x + bysin 3z + - - -
The function
ak cos kx + by sin kx

is referred to as the k" harmonic of f, and it is customary to say that the Fourier series expresses f in
terms of its harmonics. The first harmonic, a1 cosz + by sin z, is sometimes called the fundamental
harmonic of f.

Example 2

Solution

Find ag and the first four harmonics of a pulse train function f of period 27 shown in Figure 10.25:
Y

1 0Lz<7n/2
[ f(m)z{o 7r/2i<:c1/27r

D) P
)

—3r — - 0 w/2 m 2w 3m

Figure 10.25: A train of pulses with period 2

First, ag is the average value of the function, so

i 1 [m/? 1
= — = — ]_ —
a0 2m /_7r H@)idz 2n /0 de 4

Next, we compute ay, and bg, k = 1, 2, 3, and 4. The formulas

1 /" 1 /2

ag = — f(z) cos(kz) dz = —/ cos (kz) dx
L m™ Jo
1/ 1 /2

by = = f(z)sin(kz) dz = —/ sin (kz) dz
m™J_r ™ Jo

lead to the harmonics

. 1 1 .
a1cosz + bysing = —cosx + —sinz
T T

1
ao cos(2x) + by sin(2z) = - sin(2z)
. 1 I .
ag cos(3z) + bz sin(3z) = ~%r cos(3z) + o sin(3z)
a4 cos(4z) + by sin(4z) = 0.

Figure 10.26 shows the graph of the sum of ag and these harmonics, which is the fourth Fourier
approximation of f.

N\ - B
1 1 1
| \ i/ \— i@
i |
! S o \u A .
—3m —2m - /2 2 3

Figure 10.26: Fourth Fourier approximation to pulse train f equals the sum of ag and the first four harmonics
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Energy and the Energy Theorem

The quantity A, = \/a? + b? is called the amplitude of the k*" harmonic. The square of the
amplitude has a useful interpretation. Adopting terminology from the study of periodic waves, we
define the energy E of a periodic function f of period 27 to be the number

1 ™
E= | (@) d.
™ —T
Problem 19 on page 576 asks you to check that for all positive integers k,
1 K
- / (ax, cos(kx) + by sin(kz))? dz = ai + b = AZ.
™ —T
This shows that the k" harmonic of f has energy A2 The energy of the constant term ag of the
Fourier series is < ffw a? dz = 2a3, so we make the definition
A() = \/ia().

It turns out that for all reasonable periodic functions f, the energy of f equals the sum of the energies
of its harmonics:

The Energy Theorem for a Periodic Function f of Period 27

E:%/ (F(@)?de= A2+ A2+ A2 4 ...

where A9 = v2ay and 4y, = \/Ei + b2 (forall integers k > 1).

The graph of A2 against k is called the energy spectrum of f. It shows how the energy of f is
distributed among its harmonics.

Example 3

Solution

(a) Graph the energy spectrum of the square wave of Example 1.
(b) What fraction of the energy of the square wave is contained in the constant term and first three
harmonics of its Fourier series?

(a) We know from Example 1 thatag = 1/2, a, = 0fork > 1, by, = Ofor k even, and b, = 2/ (k)
for k odd. Thus

1
A2 =0 ifkiseven, k>1,
2
2 4
2 _ _ . . L
A; = <E> = —]‘7—2? if kis Odd, 1\12 1.

The energy spectrum is graphed in Figure 10.27. Notice that it is customary to represent the
energy A2 of the kP harmonic by a vertical line of length A?%. The graph shows that the constant
term and first harmonic carry most of the energy of f.
A
Height = 4/ (%)
1/2

/
s

4/(97%) 4/(2577%)

o | - l 8 k
0 1 2 3 4 5 6
Figure 10.27: The energy spectrum of a square
wave




10.5 FOURIER SERIES 571

(b) The energy of the square wave f(z) is
1 /" o 1 /7
E=— (flz))dx = — ldz =1.
T™J_x ™ Jo
The energy in the constant term and the first three harmonics of the Fourier series is
RrRyRrA2=212 012 _ 0050
HAT+ AT+ AS =5+ — 0+ 7 = 0950,

The fraction of energy carried by the constant term and the first three harmonics is

0.95/1 = 0.95, or 95%.

Musical Instruments

You may have wondered why different musical instruments sound different, even when playing the
same note. A first step might be to graph the periodic deviations from the average air pressure that
form the sound waves they produce. This has been done for clarinet and trumpet in Figure 10.28.°
However, it is more revealing to graph the energy spectra of these functions, as in Figure 10.29.
The most striking difference is the relative weakness of the second and fourth harmonics for the
clarinet, with the second harmonic completely absent. The trumpet sounds the second harmonic
with as much energy as it does the fundamental.

deviations in
air pressure
from average

deviations in

air pressure

from average .

time
Waveform of clarinet Waveform of trumpet

Figure 10.28: Sound waves of a clarinet and trumpet

—|————————Spectrum of clarinet— Spectrum of trumpet—

) o ] I.n Lk i | L ] ] | - | -k
012345678910 0123 456 78910

Figure 10.29: Energy spectra of a clarinet and trumpet

6Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956) pp. 204, 220.
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What Do We Do If Our Function Does Not Have Period 27 ?

We can adapt our previous work to find the Fourier series for a function of period b. Suppose f(x)
is given on the interval [—b/2, b/2]. In Problem 31, we see how to use a change of variable to get

the following result:

The Fourier Series for f on [—b/2, b/2]

> 2rkzx . 2k
f(@)=ao+ kz_:l (ak cos <T> + by, sin ( , ))

b/2

where ag = — (x) dx and, for k > 1,
bJ b2
2 (b2 2 2 b2 21k
ak = — (z) cos( 7rka:> dz and by = — f(a:)sin( 7r x> dz.
bJ b2 bJ pe b

The constant 27k /b is called the angular frequency of the k" harmonic; b is the period of f.

Note that the integrals over [—b/2, b/2] can be replaced by integrals over any interval of length b.

Example 4 Find the fifth-degree Fourier polynomial of the square wave f(z) graphed in Figure 10.30.
i i 1 r i f
i I | I 7
\ I I | I }
vrxur\ I L I\v 1 T
-3 -2 -1 1 2 3 4
Figure 10.30: Square wave f and its fifth Fourier approximation F
Solution Since f(x) repeats outside the interval [—1, 1], we have b = 2. As an example of how the coefficients

are computed, we find ;. Since f(z) =0for —1 < z < 0,

1

2 /! [ 2nz ' 1 2
by = : /_1 f(z)sin (T) dx _/0 sin(rz)dz = — cos(mz)| = s

0
Finding the other coefficients by a similar method, we have

1 2 2 2
flz) =~ 3T = sin(wz) + o sin(37z) + B sin(5mz).
Notice that the coefficients in this series are the same as those in Example 1. This is because the

graphs in Figures 10.24 and 10.30 are the same except with different scales on the z-axes.
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Seasonal Variation in the Incidence of Measles

Example5 Fourier approximations have been used to analyze the seasonal variation in the incidence of dis-
eases. One study’ done in Baltimore, Maryland, for the years 1901-1931, studied I (t), the average
number of cases of measles per 10,000 susceptible children in the t** month of the year. The data
points in Figure 10.31 show f(t) = log I(¢). The curve in Figure 10.31 shows the second Fourier
approximation of f(t). Figure 10.32 contains the graphs of the first and second harmonics of f(t),
plotted separately as deviations about ag, the average logarithmic incidence rate. Describe what
these two harmonics tell you about incidence of measles.

2.5 | £) First harmonic Second harmonic
20 - / ap+ 1.0 | l
159 ao +0.5 /x /[\/\
1.0 | o | v\/
0.5 ag — 0.5 |

e e NS N NN N ao—l.O

JFMAMIJ JTASONDIJFMAM it TS R S Y S Nt M

IJIFMAMIJTASONDIJFMAM

Figure 10.31: Logarithm of incidence of measles per

month (dots) and second Fourier approximation Figure 10.32: First and second harmonics of f(¢t) plotted
(curve) as deviations from average log incidence rate, ag
Solution Taking the log of I(t) has the effect of reducing the amplitude of the oscillations. However, since the

log of a function increases when the function increases and decreases when it decreases, oscillations
in f(t) correspond to oscillations in I(¢).

Figure 10.32 shows that the first harmonic in the Fourier series has a period of one year (the
same period as the original function); the second harmonic has a period of six months. The graph
in Figure 10.32 shows that the first harmonic is approximately a sine function with amplitude about
0.7; the second harmonic is approximately the negative of a sine function with amplitude about 0.2.
Thus, for ¢ in months (¢t = 0 in January),

log I(t) = f(t) = ag + 0.7sin (gt) —0.2sin (gt) ,

where 7/6 and 7/3 are introduced to make the periods 12 and 6 months, respectively. We can
estimate ag from the original graph of f: it is the average value of f, approximately 1.5. Thus

F(t) ~ 1.5+ 0.7sin (%t) — 0.2sin (%t) .

Figure 10.31 shows that the second Fourier approximation of f(t) is quite good. The harmonics of
f(t) beyond the second must be rather insignificant. This suggests that the variation in incidence in
measles comes from two sources, one with a yearly cycle that is reflected in the first harmonic and
one with a half-yearly cycle reflected in the second harmonic. At this point the mathematics can tell
us no more; we must turn to the epidemiologists for further explanation.

Informal Justification of the Formulas for the Fourier Coefficients

Recall that the coefficients in a Taylor series (which is a good approximation locally) are found
by differentiation. In contrast, the coefficients in a Fourier series (which is a good approximation
globally) are found by integration.

"From C. 1. Bliss and D. L. Blevins, The Analysis of Seasonal Variation in Measles (Am. J. Hyg. 70, 1959), reported by
Edward Batschelet, Introduction to Mathematics for the Life Sciences (Springer-Verlag, Berlin, 1979).
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We want to find the constants ag, a1, @z, ...and by, by, ...in the expression

flx)=a0+ i ay, cos(kz) + i by, sin(kz).

k=1 k=1

Consider the integral

’ f(z)dz = /w (ao + Z a, cos(kx) + Z by, sin(km)) dx
- - k=1 k=1

Splitting the integral into separate terms, and assuming we can interchange integration and summa-
tion, we get
T o0

Wf(a:)dx:/7r aoda:+/7r§:akcos kx)dw+/

by sin(kz) dzx
1

—TT —m kis k‘:l 7|' =
= / aodx + Z/ ay cos(kx) dx + Z/ by sin(kz) dz.
- k=1v"T k=1Y"T

But for k£ > 1, thinking of the integral as an area shows that
™ m
/ sin(kz) dz = 0 and / cos(kz) dx =0,
—T -1

so all terms drop out except the first, giving

™

'—‘27!'0,0.

f(z)dz = / ao dzr = apx

—Ir —r

Thus, we get the following result:

1

W= o )

f()

Thus ag is the average value of f on the interval [, 7).
To determine the values of any of the other ay or by (for positive k), we use a rather clever
method that depends on the following facts. For all integers k£ and m,

/ sin{kz) cos(mz) dz = 0,
and, provided k # m,

/ cos(kx) cos(mz)der =0 and / sin(kz) sin(mz) dz = 0.

- —m

(See Problems 26-30 on page 577.) In addition, provided m # 0, we have
™ kis
/ cos’(mz)de =7 and / sin?(mz)dx = 7.

To determine ay, we multiply the Fourier series by cos(mz), where m is any positive integer:

f(z) cos(mz) = ag cos(mz) + i ax, cos(kz) cos(mz) + f: b sin(kz) cos(mz).
k=1 k=1
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We integrate this between —7 and 7, term by term:

" f(z) cos(mz)dx = /w (ao cos(mz) + i a, cos(kz) cos(mz) + i by sin(kzx) cos(mm)) dx

- o f k=1 k=1

=ag /7; cos(mz) dz + i (ak /7r cos(kx) cos(mz) d.’r)

=\
+,§1 (bk /_ : sin(kz) cos(mz) dx> .

Provided m # 0, we have ffw cos(mz) dz = 0. Since the integral ffw sin(kx) cos(mz) dz = 0,
all the terms in the second sum are zero. Since | fr cos(kx) cos(mz) dz = 0 provided k& # m, all
the terms in the first sum are zero except where £ = m. Thus the right-hand side reduces to one
term:

’ f(z) cos(mz) dz = a, /1r cos(mz) cos(mx) dz = Tam,.

This leads, for each value of m = 1,2,3..., to the following formula:

To determine by, we multiply through by sin(mz) instead of cos(mz) and eventually obtain,

for each value of m = 1,2,3. .., the following result:
1 X
by = — f(z) sin(mz) de.
™ -

Exercises and Problems for Section 10.5

Exercises
Which of the series in Exercises 1—4 are Fourier series? 6. Repeat Problem 5 with the function
1, 14cosz+cos’z + cos®z +costz + - - f(m)z{—w —m<z<0
T 0<z<m
2. sinz +sin(z+1) +sin(z +2) + -+
3, 8% + sinz — cos(2x) = sin(2z) . cos(3z) + 7. What fraction of the energy of the function in Problem 6
sin(3z) 2 8 is contained in the constant term and first three harmonics
5 of its Fourier series?
4. 1.1 sinz 4 lsin(2w) . sin(3z) + - - For Exercises 8-10, find the n'® Fourier polynomial for the
2 3 4 5. o given functions, assuming them to be periodic with period 2.
5. Construct the ﬁrsF three Fourier approximations to the Graph the first three approximations with the original func-
square wave function tion.
-1 —-r <z <0 8 =12 —g<z<7x
f(:c)—{ 1 0<z<m. @) ! -

0 —-m<z<0
9. h{z) =
Use a calculator or computer to draw the graph of each z O<z<m
approximation. 10. g(z) =2z, —-w<z<m.
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Problems

11. Find the constant term of the Fourier series of the triangu-
lar wave function defined by f(z) = |z|for—1 <z <1
and f(z + 2) = f(z) for all z.

12. Using your result from Problem 10, write the Fourier se-
ries of g(z) = x. Assume that your series converges to
g(z) for —m < z < 7. Substituting an appropriate value
of z into the series, show that

1 m
it _ T
(=1) 2k —1 4

M]3

a
Il

1

13. (a) For —27 < 2 < 2, use a calculator to sketch:
y=sinz+ %sinSw
i)y =sinz + % sin3z + }sin5z
(b) Each of the functions in part (a) is a Fourier approx-
imation to a function whose graph is a square wave.
What term would you add to the right-hand side of
the second function in part (a) to get a better approx-
imation to the square wave?
(c¢) What is the equation of the square wave function? Is
this function continuous?

14. (a) Find and graph the third Fourier approximation of
the square wave g(z) of period 27

0
g(w)={1
0

(b) How does the result of part (a) differ from that of the
square wave in Example 1?

—r<z < —w/2
—rw/2<z< )2
/2 <z <.

15. Suppose we have a periodic function f with period 1 de-
fined by f(z) = z for 0 < z < 1. Find the fourth-degree
Fourier polynomial for f and graph it on the interval
0 <z < 1. [Hint: Remember that since the period is not
2m, you will have to start by doing a substitution. Notice
that the terms in the sum are not sin(nz) and cos(nz),
but instead turn out to be sin(27nz) and cos(27nz).]

16. Suppose f has period 2 and f(z) = zfor0 < z < 2.
Find the fourth-degree Fourier polynomial and graph it
on 0 < z < 2. [Hint: See Problem 15.]

17. Suppose that a spacecraft near Neptune has measured a
quantity A and sent it to earth in the form of a periodic
signal A cost of amplitude A. On its way to earth, the
signal picks up periodic noise, containing only second
and higher harmonics. Suppose that the signal h(t) ac-
tually received on earth is graphed in Figure 10.33. De-
termine the signal that the spacecraft originally sent and
hence the value A of the measurement.

|—8{]--- Ih(t)
| | |
Lo
il ™
—W_BT"_% ‘4 | |4 % 3T7r ™
== i T 7 i — t
i 1 I i | i i
| =y — |
L —50 - L )
Figure 10.33

18. Figures 10.34 and 10.35 show the waveforms and en-
ergy spectra for notes produced by flute and bassoon.?
Describe the principal differences between the two spec-
tra.

deviations in alr pressure

from average
|
|
|
deviations in air pressure | I
TOm average [ )
: 1 J+M ime
N 1]
y, A | ’ J\ |||J|
/ / \ / time ‘ | | II
Waveform of flute J \J
Waveform of bassoon
Figure 10.34
AR

Spectrum of tIthe—T

<ttﬂi“_

¢

| B0 a- k
0123456738
2
Ak:

Spectrum of bassoon—

— ]

| 1
& "jf-:\o _!k
01234567889

Figure 10.35

19. Show that for positive integers k, the periodic function
f(z) = akcoskz + by sin kz of period 27 has energy

2 2

aj —+ bk:'

8 Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956), pp. 200, 213.



20. Given the graph of f in Figure 10.36, find the first two
Fourier approximations numerically.

Figure 10.36

21. Justify the formula b, = %f:r F(z)sin(kx) dz for the
Fourier coefficients, by, of a periodic function of period
2m. The argument is similar to that in the text for ay.

In Problems 22-25, the pulse train of width ¢ is the periodic
function f of period 27 given by

0
0

22. Suppose that f is the pulse train of width 1.

—rm <z < —c/2
—¢/2 <z < /2
c/2 <z <.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) Find a formula for the energy of the ™ harmonic of
f. Use it to sketch the energy spectrum of f.

(¢) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

(d) Graph f and its fifth Fourier approximation on the
interval [—3m, 37].

23. Suppose that f is the pulse train of width 0.4.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

Find a formula for the energy of the '™ harmonic of
f. Use it to sketch the energy spectrum of f.

(c) What fraction of the energy of f is contained in the
constant term and the first five harmonics of f? (The
constant term and the first thirteen harmonics are
needed to capture 90% of the energy of f.)

Graph f and its fifth Fourier approximation on the
interval [—3m, 3]

(b)

(d)

Strengthen Your Understanding
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24. Suppose that f is the pulse train of width 2.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

(¢) Graph f and its third Fourier approximation on the
interval [—3m, 37].

25. After working Problems 22— 24, write a paragraph about
the approximation of pulse trains by Fourier polynomi-
als. Explain how the energy spectrum of a pulse train of
width ¢ changes as ¢ gets closer and closer to 0 and how
this affects the number of terms required for an accurate
approximation.

For Problems 26-30, use the table of integrals inside the back
cover to show that the following statements are true for posi-
tive integers k and m.

26. /7r cos(kz) cos(ma)de =0, ifk#m.
27. /7r cos’(mz) dz = ,

28. /7r sin®(ma) dz = .

29. /7r sin(kz) cos(ma) dz = 0.

30. /” sin(kz)sin(mz)dx =0, ifk# m.

31. Suppose that f(x) is a periodic function with period b.
Show that

(a) g(t) = f(bt/2m) is periodic with period 27 and
f(2) = g(2mz/b).

(b) The Fourier series for g is given by
g(t) = ao + Z (a;c cos(kt) + by sin(kt))
k=1

where the coefficients ag, ax, by, are given in the box
on page 572.
(¢) The Fourier series for f is given by

f(z) = ao+§: (ak cos <27rbkm> + by sin (Zﬂ-bkm)>
k=1

where the coefficients are the same as in part (b).

In Problems 32-33, explain what is wrong with the statement.

32. f:r sin(kz) cos(ma) dz = 7, where k, m are both pos-
itive integers.

33. In the Fourier series for f(xz) given by
ao + Z ay cos(kz) + Z by sin(kz), we have ag =
k=1 k=1

f(0).
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In Problems 34-35, give an example of flz+2m) = f(z)
34, A function, f(z), with period 27 whose Fourier series
has no sine terms. -
: : . S @ f@y={ "% TTee<Oy,y
35. A function, f(z), with period 2m whose Fourier series r—z , O<z<n~
has no cosine terms. flz +2m) = f(z)

36. True or false? If f is an even function, then the Fourier
series for f on [—, 7] has only cosines. Explain your

answer. 4-+
37. The graph in Figure 10.37 is the graph of the first three 3
terms of the Fourier series of which of the following / \2\ /
functions? T
(@) f(z)=3(z/m)*on—m <z < mand ;'6_i _}41—|2_}1_ L 2 l i l 6 N
flz+2m) = f(z) ol
-3
() ft)=lz|on—7 <z < 7and f(z+2m) = f(z) -4+

Figure 10.37

© f(z):{_s , —7r<:1c<0}and
3, O<z<m

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

o Taylor series and polynomials lor polynomial expansion
General expansion about z = 0 or ¢ = a; specific series ¢ Fourier series
for e”, sin x, cos z, (1 + x)P; using known Taylor series Formula for coefficients on [, 7], [—b, b];
to find others by substitution, multiplication, integration, Energy theorem

and differentiation; interval of convergence; error in Tay-

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TEN

Exercises

For Exercises 1-4, find the second-degree Taylor polynomial 10, Find the first four nonzero terms of the Taylor series
about the given point. around = O for f(z) = cos?z. [Hint: cos’z =
0.5 (1 + cos2z) .]
1. €%, z=1 2, Inz, =2
3. sinz, z=-m/4 4. tanf, 6=m/4 In Exercises 11-18, find the first four nonzero terms of the

Taylor series about the origin of the given functions.
5. Find the third-degree Taylor polynomial for f(z) =

2+ 722 -5z +latz=1.

2t
. 12. 3
For Exercises 6-8, find the Taylor polynomial of degree n for 1,5t cos(3y)
« near the given point a.
1 13. 6% cos 6* 14. sint?
6. , a=2, n=4
11—z
7. vV1+z, a=1 n=3 1. 16. _
8 Inz, a=2, n=4 1+1¢ 1—4z2
9. Write out P7, the Taylor polynomial of degree n = 7
approximating g near = = 0, given that i 22
17. 18, ——
o (D g 1=z Vi-at
9w} =D G or e

i=1



